If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2-12v-16=0
a = 2; b = -12; c = -16;
Δ = b2-4ac
Δ = -122-4·2·(-16)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{17}}{2*2}=\frac{12-4\sqrt{17}}{4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{17}}{2*2}=\frac{12+4\sqrt{17}}{4} $
| 6v-34=-7(v+3) | | x+3.17=12.08S | | 34=-3+7(c-6) | | 3=5x2 | | 7x-3(x-1)=2(2x-3) | | (3x+10)=6x-10 | | y/5+12=19 | | 6(2a+4)=29 | | 7x-25=27+48x | | -6=-2v+6 | | -6=-2u+6 | | y/5-14=25 | | 30/2x-1=6 | | 10-b=-34-5b | | 3x+13+5x-3=180 | | 8y-4+9=-18 | | -3y-12=18 | | (7x-5)+(x+1)=180 | | 8m^2+22m+5=0 | | 6x+24=4x–8 | | 5+2x-3x(2+4)=-x(3+5)-3 | | 5+2x-3x(2+4)-x(3=5)-3 | | 2(3x-7)=-x | | −n+112=1 | | 7(8h−3)+2h=72−4h | | 2(3y-18)=4y-6 | | 6x+3/11=3 | | 14x-4x-242=88 | | 18+2x=234 | | 14x−4x−242=88 | | 17-2p=2p+5+2- | | -n+1/12=1 |